Journal of Obstetric and Gynaecological Practices POGS

Register      Login

SEARCH WITHIN CONTENT

FIND ARTICLE

Volume / Issue

Online First

Related articles

VOLUME 1 , ISSUE 2 ( July-December, 2023 ) > List of Articles

Original Article

Impact of Oocytes with Mild and Heavy Debris in Perivitelline Space on Blastocyst Quality

V Dinesh Ram, N Chandan, Mahalakshmi, Jayashree Srinivasan, J Damodharan

Keywords : Human menopausal gonadotropin, Perivitelline space, Zona pellucida

Citation Information : Ram VD, Chandan N, Mahalakshmi, Srinivasan J, Damodharan J. Impact of Oocytes with Mild and Heavy Debris in Perivitelline Space on Blastocyst Quality. J Obstet Gynaecol 2023; 1 (2):42-48.

DOI: 10.5005/jogyp-11012-0014

License: CC BY-NC 4.0

Published Online: 24-11-2023

Copyright Statement:  Copyright © 2023; The Author(s).


Abstract

Aim: The aim of this study is to compare the blastocyst quality of oocytes with mild and heavy debris in perivitelline space (DPVS). Objective: To investigate the rate of blastocyst development of oocytes with mild DPVS and to investigate the rate of blastocyst development of oocytes with heavy DPVS, then to compare the rate of blastocyst development of oocytes with mild and heavy DPVS and to identify ideal blastocyst for transfer. Study population: Patients who have undergone controlled ovarian stimulation for the intracytoplasmic sperm injection (ICSI) cycle from March 2023 to May 2023 ARC International Fertility and Research Centre. Study groups: Two groups were considered—oocytes with mild debris or granularity in perivitelline space (PVS) and oocytes with heavy debris or granularity in PVS. Results: This study from March 2023 to May 2023 was done at ARC International Fertility and Research Centre. Patients undergoing the Antagonist protocol for the ICSI cycle were considered. Around 371 M2 oocytes were analyzed, in that 203 had mild debris or granularity in PVS and 168 had heavy debris or granularity in PVS. In oocytes with mild debris or granularity in PVS, their fertilization rate, cleavage rate, and frozen blastocyst rate are 88, 81, and 47%, respectively. In oocytes with heavy debris or granularity in PVS their fertilization rate, cleavage rate, and frozen blastocyst rate are 76, 59, and 15%, respectively. Oocytes with heavy debris or granularity in PVS have compromised blastocyst quality compared with mild debris or granularity in PVS. Conclusion: In this study, we conclude that debris or granularity in PVS can be considered an indicator of oocyte competence. This can help in identifying a cohort of oocytes with a lower chance of forming viable embryos. This helps in reducing the culture of supernumerary embryos. We suggest that when the patients enroll for donor oocytes, oocytes without heavy debris or granularity in PVS should be used because heavy granularity in PVS has compromised blastocyst conversion. Further studies are needed with a large sample size to get a conclusion.


HTML PDF Share
  1. Adhikari D, Liu K. The regulation of maturation promoting factor during prophase I arrest and meiotic entry in mammalian oocytes. Mol Cell Endocrinol 2014;385(1–2):12–20. DOI: 10.1016/j.mce.2014.02.011.
  2. Alpha Scientists in Reproductive Medicine, ESHRE Special Interest Group of Embryology. The Vienna consensus: Report of an expert meeting on the development of ART laboratory performance indicators. Reprod Biomed Online 2017;35(5):494–510. DOI: 10.1016/j.rbmo.2017.06.015.
  3. Balakier H, Bouman D, Sojecki A, et al. Morphological and cytogenetic analysis of human giant oocytes and giant embryos. Hum Reprod 2002;17(9):2394–2401. DOI: 10.1093/humrep/17.9.2394.
  4. Bermejo A, Iglesias C, Ruiz–Alonso M, et al. The impact of using the combined oral contraceptive pill for cycle scheduling on gene expression related to endometrial receptivity. Hum Reprod 2014;29(6):1271–1278. DOI: 10.1093/humrep/deu065.
  5. Carson CC III, Lipshultz LI, Howards SS. Male reproductive function and semen. In: Wein AJ, Kavoussi LR, Novick AJ, et al., editors. Campbell–Walsh Urology, 11th edition. Philadelphia: Elsevier; 2016.
  6. Cheng CY, Mruk DD. The blood–testis barrier and its implications for male contraception. Pharmacol Rev 2012;64(1):16–64. DOI: 10.1124/pr.110.002790.
  7. Conti M, Andersen CB, Richard F, et al. Role of cyclic nucleotide signaling in oocyte maturation. Mol Cell Endocrinol 2002;187 (1–2):153–159. DOI: 10.1016/s0303-7207(01)00686-4.
  8. Cornwall GA, von Horsten HH. Sperm maturation in the epididymis. In: Carrell DT (eds). The Genetics of Male Infertility. Humana Press. DOI: https://doi.org/10.1007/978-1-59745-176-5_13.
  9. Dacheux JL, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction 2013;147(2):R27–R42. DOI: 10.1530/REP-13-0420.
  10. de Rooij DG, Grootegoed JA. Spermatogonial stem cells. Curr Opin Cell Biol 1998;10(6):694–701. DOI: 10.1016/s0955-0674(98)80109-9.
  11. Devoto L, Fuentes A, Kohen P, et al. The human corpus luteum: Life cycle and function in natural cycles Fertil Steril 2009;92(3):1067–1079. DOI: 10.1016/j.fertnstert.2008.07.1745.
  12. Ding N, Liu X, Jian Q, et al. Dual trigger of final oocyte maturation with a combination of GnRH agonist and hCG versus a hCG alone trigger in GnRH antagonist cycle for in vitro fertilization: A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol 2017;218:92–98. DOI: 10.1016/j.ejogrb.2017.09.004.
  13. Drummond AE. The role of steroids in follicular growth. Reprod Biol Endocrinol 2006;4:16. DOI: 10.1186/1477-7827-4-16.
  14. Ebner T, Moser M, Shebl O, et al. Prognosis of oocytes showing aggregation of smooth endoplasmic reticulum. Reprod Biomed Online 2008;16(1):113–118. DOI: 10.1016/s1472-6483(10)60563-9.
  15. Ebner T, Moser M, Shebl O, et al. Developmental fate of ovoid oocytes. Hum Reprod 2008;23(1):62–66. DOI: 10.1093/humrep/dem280.
  16. Esfandiari N, Burjaq H, Gotlieb L, et al. Brown oocytes: implications for assisted reproductive technology. Fertil Sterility 2006;86(5): 1522–1525. DOI: 10.1016/j.fertnstert.2006.03.056.
  17. Farhi J, Nahum H, Weissman A, et al. Coarse granulation in the perivitelline space and IVF-ICSI outcome. J Assist Reprod Genet 200219(12):545–549. DOI: 10.1023/a:1021243530358.
  18. Farquhar C, Rombauts L, Kremer JA, et al. Oral contraceptive pill, progestogen or oestrogen pretreatment for ovarian stimulation protocols for women undergoing assisted reproductive techniques. Cochrane Database Syst Rev 2017;5(5):CD006109. DOI: 10.1002/14651858.
  19. Zanetti BF, de Almeida Ferreira Braga DP, Setti AS, et al. Is perivitelline space morphology of the oocyte associated with pregnancy outcome in intracytoplasmic sperm injection cycles? Eur J Obstet Gynecol Reprod Biol 2018;231:225–229. DOI: 10.1016/j.ejogrb.2018.10.053.
  20. Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: A committee opinion. Fertil Steril 2015;103(3):e18–e25. DOI: 10.1016/j.fertnstert.2014.12.103.
  21. Ga R, Muvvala SPR. Access to infertility care and ART treatment in India: A clinician's perspective. Best Pract Res Clin Obstet Gynaecol 2023;86:102302. DOI: 10.1016/j.bpobgyn.2022.102302.
  22. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen RP, Mortimer D, editors. Towards Reproductive Certainty: Infertility and Genetics Beyond. Carnforth: Parthenon Press; 1999, pp. 207–222.
  23. Gnoth C, Godehardt E, Frank–Herrmann P, et al. Definition and prevalence of subfertility and infertility. Hum Reprod 2005;20(5): 1144–1147. DOI: 10.1093/humrep/deh870.
  24. Yeung CH, Cooper TG, Oberpenning F, et al. Changes in movement characteristics of human spermatozoa along the length of the epididymis. Bio Repro 1993;49(2):274–280. DOI: 10.1095/biolreprod49.2.274.
  25. Griesinger G, Diedrich K, Devroey P, et al. GnRH agonist for triggering final oocyte maturation in the GnRH antagonist ovarian hyperstimulation protocol: A systematic review and meta-analysis. Hum Reprod Update 2006;12:159–168. DOI: 10.1093/humupd/dmi045.
  26. Haahr T, Roque M, Esteves SC, et al. GnRH agonist trigger and LH activity luteal phase support versus hCG trigger and conventional luteal phase support in fresh embryo transfer IVF/ICSI cycles: A systematic PRISMA review and meta-analysis. Front Endocrinol (Lausanne) 2017;8:116. DOI: 10.3389/fendo.2017.00116.
  27. Handel MA, Schimenti JC. Genetics of mammalian meiosis: Regulation, dynamics and impact on fertility. Nat Rev Genet 2010;11(12):124–136. DOI: 10.1038/nrg2723.
  28. Hassa H, Aydın Y, Taplamacıoğlu F. The role of perivitelline space abnormalities of oocytes in the developmental potential of embryos. J Turk Ger Gynecol Assoc 2014;15(3):161–163. DOI: 10.5152/jtgga.2014.13091.
  29. Hassan-Ali H, Hisham-Saleh A, El-Gezeiry D, et al. Perivitelline space granularity: A sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Hum Reprod 1998;13(12):3425–3430. DOI: 10.1093/humrep/13.12.3425.
  30. Hirshfiel AN. Development of follicles in the mammalian ovary. Int Rev Cytol 1991;124:43–101. DOI: 10.1016/s0074-7696(08)61524-7.
  31. Huckins C. The spermatogonial stem cell population in adult rats: I. Their morphology, proliferation and maturation. 1971;169(3):533–557. DOI: 10.1002/ar.1091690306.
  32. Inhorn MC, Patrizio P. Infertility around the globe: New thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update 2015;21(4):411–426. DOI: 10.1093/humupd/dmv016.
  33. Jiang Y, Song G, Yuan J, et al. ICSI with All Oocytes Recurrent Metaphase I Characterized by Absence Perivitelline Space. Open J Obstetr Gynecol 2012;11(9):1112–1116. DOI: 10.4236/ojog.2021.119104.
  34. Kovačič B, Vlaisavljević V, Reljič M, et al. Developmental capacity of different morphological types of day 5 human morulae and blastocysts. Reprod BioMed Online 2004;8:687–694. DOI: 10.1016/s1472-6483(10)61650-1.
  35. Lambalk CB, Banga FR, Huirne JA, et al. GnRH antagonist versus long agonist protocols in IVF: A systematic review and meta-analysis accounting for patient type. Hum Reprod Update 2017;23(5):560–579. DOI: 10.1093/humupd/dmx017.
  36. Lasiene K, Vitkus A, Valanciūte A, et al. Morphological criteria of oocyte quality. Medicina (Kaunas) 2009;45(7):509–515. PMID: 19667744.
  37. Lazzaroni–Tealdi E, Barad DH, Albertini DF, et al. Oocyte scoring enhances embryo-scoring in predicting pregnancy chances with IVF where It counts most. PLoS One 2015;10(12):e0143632. DOI: 10.1371/journal.pone.0143632.
  38. Ledan E, Lacoste N, Heyman Y. Meiotic maturation of the mouse oocyte requires an equilibrium between cyclin B synthesis and degradation. Dev Biol 2001;232(2):400–413. DOI: 10.1006/dbio.2001.0188.
  39. Li M, Ma SY, Yang HJ, et al. Pregnancy with oocytes characterized by narrow perivitelline space and heterogeneous zona pellucida: Is intracytoplasmic sperm injection necessary? J Assist Reprod Genet 2014;31(3):285–294. DOI: 10.1007/s10815-013-0169-9.
  40. Bartolacci AM, Intra G, Coticchio G, et al. Does morphological assessment predict oocyte developmental competence? A systematic review and proposed score. J Assist Reprod Genet 2022;39: 3–17. DOI: https://doi.org/10.1007/s10815-021-02370-3.
  41. Mann T, Lutwak-Mann C. Male Reproductive function and semen, Springer, Berlin, 1981.
  42. Matzuk MM, Lamb BD, DeMayo FJ. Small-molecule inhibition of BRDT for male contraception. Cell 2012;150:673–684. DOI: 10.1016/j.cell.2012.06.045.
  43. Mortimer ST. Corner CASA—Practical Aspects 2000;21(4):514–524. PMID: 10901437.
  44. O'Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis 2015;4(2): e979623. DOI: 10.4161/21565562.2014.979623.
  45. Ovarian Stimulation TEGGO, Bosch E, Broer S, ESHRE guideline: Ovarian stimulation for IVF/ICSI. Hum Reprod Open 2020;2020(2):hoaa009. DOI: 10.1093/hropen/hoaa009.
  46. Yu EJ, Ahn H, Lee JM, et al. Fertilization and embryo quality of mature oocytes with specific morphological abnormalities. Clin Exp Reprod Med 2015;42(4):156–162. DOI: 10.5653/cerm.2015.42.4.156.
  47. Pankaj Talwar. Jaypee's Video Atlas of Assisted Reproductive Technologies and Clinical Embryology. New Delhi: Jaypee Brothers Medical Publication; 2014.
  48. Panzarino M, Depalo R, Garruti G, et al. Francesco Giorgino & Luigi Eustacchio Selvaggi (2011) Oocyte morphological abnormalities in overweight women undergoing in vitro fertilization cycles, Gynecological Endocrinology 27;11:880–884. DOI: 10.3109/09513590.2011.569600.
  49. Pepling ME. From primordial germ cell to primordial follicle: Mammalian female germ cell development. Genesis 2006;44(12):622–632. DOI: 10.1002/dvg.20258.
  50. Plachot M, Selva J, Wolf JP, et al. Consequences of oocyte dysmorphy on the fertilization rate and embryo development after intracytoplasmic sperm injection. A prospective multicenter study. Gynecol Obstet Fertil 2002;30(10):772–779. DOI: 10.1016/s1297-9589(02)00437-x.
  51. Rao KA. Principle and Practice of Assisted reproductive Technology. New Delhi: Jaypee Brothers Medical Publication; 2014.
  52. Rienzi L, Ubaldi FM, Iacobelli M, et al. Significance of metaphase II human oocyte morphology on ICSI outcome. Fertil Steril 2008;90(5):1692–1700. DOI: 10.1016/j.fertnstert.2007.09.024.
  53. Rienzi L, Vajta G, Ubaldi F. Predictive value of oocyte morphology in human IVF: A systematic review of the literature. Hum Reprod Update 2011;17(1):34–45. DOI: https://doi.org/10.1093/humupd/dmq029.
  54. Rosenbusch H, Rauch E, Wiklund J. The mediating role of entrepreneurial orientation in the task environment–performance relationship. J Business Venturing 2002:17(5):635–659.
  55. Schiewe MC. An effective, simplified, and practical approach to intracytoplasmic sperm injection at multiple IVF centers. J Assist Reprod Genet 13(3):238–245. DOI: 10.1007/BF02065943.
  56. Suarez SS, Pacey AA. Sperm transport in the female reproductive tract. Hum Reprod Update 2016;12(1):23–37. DOI: 10.1093/humupd/dmi047.
  57. Tarlatzis BC, Fauser BC, Kolibianikis EM, et al. GnRH antagonist in ovarian stimulation for IVF. Hum Reprod Update 2006;12(4):333–340. DOI: 10.1093/humupd/dml001.
  58. Ebner T. Extracytoplasmic markers of human oocyte quality. J Mamm Ova Res 2009;6(1):18–25. DOI: 10.1274/jmor.26.18.
  59. Van Royen E, Mangelschots K, De Neubourg D, et al. Characterization of a top quality embryo, a step towards single-embryo transfer. Hum Reprod 1999;14(12):3172–3178. DOI: 10.1093/humrep/14.12.3172.
  60. Visconti PE, Lewis SE, Suarez SS. Sperm bioenergetics in a nutshell. Biol Reprod 2012;87(3):72. DOI: 10.1095/biolreprod.112.104109.
  61. Wasilewski T, Łukaszewicz–Zając M, Wasilewska J, et al. Biochemistry of infertility. Clin Chim Acta 2020;508:185–190. DOI: 10.1016/j.cca.2020.05.039.
  62. World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th edition. Geneva: World Health Organization; 2010.
  63. Xia P. Intracytoplasmic sperm injection: Correlation of oocyte grade based on polar body, perivitelline space and cytoplasmic inclusions with fertilization rate and embryo quality. Hum Reprod 1997;12(8):1750–1755. DOI: 10.1093/humrep/12.8.1750.
  64. Yakin K, Balaban B, Isiklar A, et al. Oocyte dysmorphism is not associated with aneuploidy in the developing embryo. Fertil Steril 2007;88(4):811–816. DOI: 10.1016/j.fertnstert.2006.12.031.
  65. Yanagimachi R, Yanagimachi M, Rogers BJ. Mammalian fertilization. In: Knobil and Neill's Physiology of Reproduction, 4th edition. Philadelphia, PA: Elsevier; 2015, pp. 851–909.
  66. Yu B, van Tol HTA, Stout TAE, et al. Cellular fragments in the perivitelline space are not a predictor of expanded blastocyst quality. Front Cell Dev Biol 2021;8:616801. DOI: 10.3389/fcell.2020.616801.
  67. Zeleznik AJ. The physiology of follicle selection. Reprod Biol Endocrinol 2004;2(1):1–7. DOI: 10.1186/1477-7827-2-31.
  68. Zuckerman S. The number of oocytes in the mature ovaries. Recent Prog Horm Res 1951;6:63–108. DOI: 10.1210/rphv/6.1.63.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.