The Transformative Role of Artificial Intelligence in Training Obstetrics and Gynecology Residents
Anuradha Choudhary, Aditya Narayan Choudhary
Keywords :
Artificial intelligence, Artificial intelligence in healthcare, Gynecology, Obstetrics, Resident training
Citation Information :
Choudhary A, Choudhary AN. The Transformative Role of Artificial Intelligence in Training Obstetrics and Gynecology Residents. J Obstet Gynaecol 2023; 1 (2):61-62.
Noorbakhsh-Sabet N, Zand R, Zhang Y, et al. Artificial intelligence transforms the future of health care. Am J Med 2019;132(7):795–801. DOI: 10.1016/j.amjmed.2019.01.017.
Knoops PGM, Papaioannou A, Borghi A, et al. A machine learning framework for automated diagnosis and computer-assisted planning in plastic and reconstructive surgery. Sci Rep 2019;9:13597. DOI: https://doi.org/10.1038/s41598-019-49506-1.
Kanevsky J, Corban J, Gaster R, et al. Big data and machine learning in plastic surgery: A new frontier in surgical innovation. Plast Reconstr Surg 2016;137(5):890e–897e. DOI: 10.1097/PRS.0000000000002088.
Mehta N, Devarakonda MV. Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey? J Allergy Clin Immunol 2018;141(6):2019–2021.e1. DOI: 10.1016/j.jaci.2018.02.025.
Pucchio A, Rathagirishnan R, Caton N, et al. Exploration of exposure to artificial intelligence in undergraduate medical education: A Canadian cross-sectional mixed-methods study. BMC Med Educ 2022;22(1):815. DOI: 10.1186/s12909-022-03896-5.
Winkler-Schwartz A, Bissonnette V, Mirchi N, et al. Artificial Intelligence in medical education: Best practices using machine learning to assess surgical expertise in virtual reality simulation. J Surg Educ 2019;76(6):1681–1690. DOI: 10.1016/j.jsurg.2019.05.015.
Kumar Y, Koul A, Singla R, et al. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput 2023;14(7):8459–8486. DOI: 10.1007/s12652-021-03612-z.
Yi J, Kang HK, Kwon JH, et al. Technology trends and applications of deep learning in ultrasonography: Image quality enhancement, diagnostic support, and improving workflow efficiency. Ultrasonography 2021;40(1):7–22. DOI: 10.14366/usg.20102.
Espinoza J, Good S, Russell E, et al. Does the use of automated fetal biometry improve clinical work flow efficiency? J Ultrasound Med 2013;32(5):847–850. DOI: 10.7863/ultra.32.5.847.
Loftus TJ, Tighe PJ, Filiberto AC, et al. Artificial intelligence and surgical decision-making. JAMA Surg 2020;155(2):148–158. DOI: 10.1001/jamasurg.2019.4917.
Iftikhar P, Kuijpers MV, Khayyat A, et al. Artificial intelligence: A new paradigm in obstetrics and gynecology research and clinical practice. Cureus 2020;12(2):e7124. DOI: 10.7759/cureus.7124.
Anisuzzaman DM, Wang C, Rostami B, et al. Image-based artificial intelligence in wound assessment: A systematic review. Adv Wound Care (New Rochelle) 2022;11(12):687–709. DOI: 10.1089/wound.2021.0091.
Wæhrens EE, Amris K, Fisher AG. Performance-based assessment of activities of daily living (ADL) ability among women with chronic widespread pain: Pain 2010;150(3):535–541. DOI: 10.1016/j.pain.2010.06.008.
Farhud DD, Zokaei S. Ethical issues of artificial intelligence in medicine and healthcare. Iran J Public Health 2021;50(11):i–v. DOI: 10.18502/ijph.v50i11.7600.